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Abstract

This paper presents a novel approach based on an adaptive parameter estimation technique for the dynamic balancing of

the armature in an automobile starting motor. The proposed scheme is implemented on an experimental system comprising

an unbalance measurement machine and a milling machine. Applying the influence coefficient method, two matrices,

namely the unbalance calculation matrix and the milling vector calculation matrix, are constructed. The unbalance calcu-

lation matrix computes the armature unbalance based on vibration measurements, while the milling vector calculation

matrix establishes the position and magnitude of the required unbalance correction. To compensate for the wear of the

milling cutter following repeated machining operations, an algorithm is formulated to generate on-line estimates of the

parameter settings required in the milling vector calculation matrix. A series of balancing experiments are performed to

evaluate the feasibility and performance of the proposed scheme. The results show that the balancing system achieves a

better balancing performance than a system based on the conventional influence coefficient method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

One of the major sources of vibration in an electric motor is unbalance in the armature. Vibration not only
results in a noisy motor operation, but also severely limits the service life of the motor bearings. Accordingly,
in the motor assembly line, each armature must be properly balanced before it is assembled to ensure that the
motor vibration will fall within acceptable limits.

Balancing techniques are commonly classified as either static (i.e. one-plane balancing) or dynamic (i.e. two-
plane balancing) [1]. Static balancing is applied primarily to rotors with a length/diameter (L/D) ratio of less
than 1. One-plane balancing is generally performed using a four-run approach and the single-plane influence
coefficient method. Dynamic balancing is generally applied for the balancing of rotors with a L/D ratio of
more than 1, e.g. the armatures in generators or motors. Typical dynamic balancing techniques include the
modal balancing method, the influence coefficient method, and the unified balancing method [2]. The modal
balancing method is generally applied for the balancing of flexible shafts. However, obtaining accurate results
requires a knowledge of the rotor’s modal shapes. By contrast, the influence coefficient method is typically
employed for the balancing of rigid shafts or rotors. However, this method requires highly accurate
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

Y vector of vibration measurement
X milling vector
+ phase angle of a complex number
U unbalance vector

Uc correction mass vector
Ur residual unbalance vector
yYX influence coefficient matrix mapping

from Y to X

ŷ estimation of y
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measurements of the vibration in order to guarantee an acceptable balancing result. The unified balancing
method aims to exploit the particular benefits of both methods, while simultaneously eliminating their
limitations.

The influence coefficient method has become a mainstream method for the dynamic balancing of rigid body
rotors [2]. Thearle [3] expanded the basic principles of this method to develop a two-plane balancing technique
for the dynamic balancing of rigid motors using a two-plane, two-sensor, single-speed, and exact-point
influence coefficient balancing procedure. Various researchers have proposed improvements to the original
influence coefficient balancing method. For example, Goodman [4] extended the basic influence coefficient
procedure by including the least-squares (LS) method to improve its accuracy. Lund and Tonneson [5]
developed a procedure to optimize the influence coefficient matrix by taking the effects of vibration
measurement errors into account. While both approaches provided excellent results for their own particular
experimental systems, most studies of the influence coefficient method reported in the literature focus
primarily on field balancing. By contrast, the task of balancing rigid rotors on a balancing machine in the
motor assembly line has attracted comparatively little attention.

In the motor manufacturing industry, rotor unbalance is generally corrected using some form of
material removal technique. Such techniques are suitable for high production rate environments and
provide acceptable results when lower balancing tolerances are sufficient [6]. In material removal methods,
the unbalance amount is converted to a milling vector which specifies both the depth and the position
of the milling slots which are to be machined in the center of the poles on the laminations of the
motor armature to correct the unbalance. However, the unbalance amount of motor armatures is generally
quite large, and hence many cuts are required to compensate for the unbalance. To reduce the cost of
the balancing process, it is therefore necessary to optimize the relationship between the unbalance amount
and the milling vector. However, the relationship between the cutting depth of the milling machine and the
weight of the removed material depends on the wear condition of the cutter. As a result, the optimal
parameters settings specified in the matrix vary over time. Therefore, a requirement exists for a dynamic
balancing system in which these parameters can be tuned on-line to compensate for the progressive wear of the
milling machine.

Accordingly, this paper develops a dynamic balancing system comprising an unbalance measurement
machine and a milling machine for the balancing of automobile starting motor armatures. The paper
commences by outlining the basic principles of the proposed balancing method and then describes the
enhancement of this balancing method via its integration with an adaptive parameter estimation scheme.
Finally, a series of experiments are performed to verify the proposed approach and to evaluate its performance
compared to that of a balancing scheme based on the conventional influence coefficient method.
2. Design of dynamic balancing system

In balancing a rotor, the most important consideration is the balancing quality required. This requirement is
conventionally expressed in terms of the acceptable balance tolerance. The International Standards
Organization (ISO) has developed the ISO 1940 Standard for determining the balance tolerance (defined in
terms of the permissible residual unbalance) for various rotor classifications [7]. According to this standard,
rotors are assigned a ‘‘G’’ grade ranging from G0.4 to G4000 in accordance with their intended application. In
general, motor armatures such as those considered in the present study are generally assigned grades of G1,
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G2.5 or G6.3. ISO 1940 is widely applied throughout the motor industry and is therefore used in the present
study to evaluate the performance of the proposed dynamic balancing system.

The dynamic rotor balancing system proposed in this study is based on the influence coefficient method
[8,9]. In conventional balancing methods, the influence coefficient matrix is used to relate the amount of
unbalance to the measured vibration of the rotor. However, in the method proposed in this study, the
influence coefficient matrix is employed to relate the material removal milling vector to the vibration of the
armature. Furthermore, the designed balancing system incorporates an adaptive parameter identification
technique which allows the matrix parameters to be updated on-line during the balancing process in order to
compensate for errors arising during transformation between the vibration measurements and the milling
vector and to adapt to the changing wear condition of the milling machine. As described in the paragraphs
below, the balancing scheme basically comprises an unbalance calculation module, an unbalance correction
module, and a parameter estimation module.

2.1. Calculation of amplitude and phase of vibration signals

When an unbalanced rotor rotates on a soft-suspended support, the amplitude of the associated vibration is
proportional to the amount of unbalance. As a result, the unbalance amount can be determined by calculating
the vibrational amplitude. In the proposed balancing system, the signals from the vibration sensors are filtered
and amplified and the amplitude and phase angle of the vibration measurement, Y(t), are then determined
using the Fourier series.

In general, any periodic signal can be expanded by the Fourier series as

Y ðtÞ ¼ a0 þ
X1
n¼1

ðan cos notþ bn sin notÞ

¼ a0 þ a1 cos otþ b1 sin otþ a2 cos 2otþ b2 sin 2otþ . . . , ð1Þ

where

an ¼
1

p

Z p

�p
Y ðtÞ cos notdt; and bn ¼

1

p

Z p

�p
Y ðtÞ sin notdt. (2)

In the current application, the fundamental frequency o in Eqs. (1) and (2) corresponds to the balancing
speed of the rotor. Since the vibration signals are dominated by the fundamental component, Eq. (1) can be
approximated by

Y ðtÞ � a0 þ a1 cos otþ b1 sin ot. (3)

Furthermore, since the vibration sensors used in the proposed balancing system are of the velocity type,
a0 ¼ 0, and therefore it can be shown that Y(t) is given by

Y ðtÞ ¼ y cosðot� f1Þ ¼ yfff1, (4)

with y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ b2

1

q
, f1 ¼ tan�1ðb1=a1Þ, and a1 ¼ ð1=pÞ

R p
�p Y ðtÞ cos otdt, b1 ¼ ð1=pÞ

R p
�p Y ðtÞ sin otdt.

During balancing, the rotor speed, o, is known a priori, and hence the amplitude and phase angle of Y(t)
can be determined from Eq. (4).

2.2. Determination of amount of unbalance

In the proposed balancing system, the rotor unbalance is computed using the influence coefficient method.
In applying this method, the following assumptions are made: (1) the vibratory response of the unbalanced
rotor is proportional to the amount of the unbalance, and (2) the unbalance amount is negligible compared to
the total weight of the rotor. Fig. 1 presents the basic configuration of the motor armature considered in the
present study. Importantly, the armature can be regarded as a rigid body because its service speed when
assembled in a motor is far lower than its natural frequency. Furthermore, the L/D ratio of the armature is
greater than 1, and hence dynamic balancing rather than static balancing is required. In the influence
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Fig. 1. Schematic diagram of armature showing two balance planes.
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coefficient method, all of the unbalances can be modeled as though they occur on two distinct planes on the
armature. Conventionally, these planes are referred to as the balancing planes. During the balancing
operation, vibration readings are acquired from these balancing planes using two vibration sensors, and a
reference point is used to identify the phase angle of the unbalance.

The vibration readings YA and YB obtained on planes A and B, respectively, (see Fig. 1) are assumed to be
linear combinations of the unknown unbalances UA and UB on planes A and B, respectively, i.e.

Y A

Y B

" #
¼

yAA yAB

yBA yBB

" #
UA

UB

" #
¼ yU , (5)

where y is the influence coefficient matrix and its entries are all complex numbers. In matrix y, each entry, yij, is
known as an influence coefficient and describes the effect of an unbalance in the jth plane on the vibration in
the ith plane. To determine these influence coefficients, a trial mass Mj with a mass of approximately five times
the permissible residual unbalance is positioned in one plane and the corresponding vibratory response to this
mass is measured on the measuring plane. The procedure is then repeated for the other plane. The influence
coefficient is then computed from the measurement results in accordance with

yij ¼
Y

j
i � Y j

Mj

; with i; j ¼ A;B, (6)

where Yj is the jth vibration reading without the trial mass installed, Yi
j is the ith vibration reading with the

trial mass installed on the jth balancing plane, and Mj is a complex number representing the amplitude and
angular position of the trial mass. Having constructed the influence coefficient matrix, the rotor unbalances
can then be determined from

U ¼
UA

UB

" #
¼

yAA yAB

yBA yBB

" #�1
Y A

Y B

" #
. (7)

It follows that the correction masses which should be added on planes A and B are given by

Uc ¼ �U ¼ ½UcA UcB�
T, (8a)

with

UcA ¼
yBBY A � yABY B

yAAyBB � yAByBA

and UcB ¼
yAAY B � yBAY A

yAAyBB � yAByBA

. (8b)

When balancing a rotor using the mass addition technique, Eq. (8) allows appropriate values for the
correction masses UcA and UcB to be computed once the influence coefficient matrix has been determined. As
shown in Eq. (7), the influence coefficient matrix relates the unbalance to the vibratory response. Although this
matrix provides a convenient solution when balancing rotors using a mass addition technique, in mass
removal methods, an additional relationship is required to map the weight of the material removed from the
armature to the cutting depth of the milling cutter. In a practical milling machine, this relationship is nonlinear
and varies as a function of the wear condition of the cutter. Since it may be necessary to balance thousands of
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motor armatures in a single day in a motor mass-production line, the effects of cutter wear must be taken into
account. Therefore, the dynamic balancing scheme proposed in this study incorporates an adaptive parameter
estimation algorithm which enables the parameters in the influence coefficient matrix to be tuned on-line
during the balancing process.

2.3. Adaptive parameter estimation

The least-squares (LS) method is widely applied to solve linear optimization problems. The goal of the LS
method is to identify the model output, ŷ, which best approximates the process output, y, in the LS sense, i.e.
with the minimal sum of the squared error loss function values. This process is trivial for a mathematical
model which can be written in the form of

ŷ ¼ X ŷ, (9)

where ŷ is the estimate of y, ŷ is the estimate of the unknown parameters, and X is a known matrix containing
the measured system information. Defining the estimated error as

eðkÞ ¼ yðkÞ � ŷðkÞ ¼ yðkÞ � X ŷ, (10)

and specifying the loss function for this estimate as

IðŷÞ ¼
1

2
eTe, (11)

the LS problem becomes one of minimizing this loss function. For the optimal solution, the gradient of IðŷÞ
with respect to the parameter ŷ is zero, i.e.

qIðŷÞ

qŷ
¼ �XTe ¼ �XTðy� X ŷÞ ¼ 0. (12)

Therefore, it follows that

ŷ ¼ ðXTX Þ�1XTy. (13)

In the current study, the LS method is applied to estimate two matrices, namely the unbalance calculation
matrix and the milling vector calculation matrix. In general, if there is a large amount of experimental data,
computing the matrix inversion XTX in Eq. (13) is highly complex and it is therefore impractical to apply the
standard LS method directly. By contrast, the adaptive parameter estimation method provides a more feasible
approach since it allows the parameters to be continuously adjusted on-line in accordance with new
experimental data received [10].

The adaptive parameter estimation technique can be briefly summarized as follows. When new experimental
data become available, the current predicted value of X ðkÞŷðk � 1Þ is compared with the actual output value,
y(k), to give an estimated error, i.e.

eðkÞ ¼ yðkÞ � XTðkÞŷðk � 1Þ. (14)

The new parameter estimate is then calculated as

ŷðkÞ ¼ ŷðk � 1Þ þ gðkÞeðkÞ (15)

with

gðkÞ ¼
Pðk � 1ÞX ðkÞ

X ðkÞTPðk � 1ÞX ðkÞ þ l
and PðkÞ ¼

1

l
ðI � gðkÞXTðkÞÞPðk � 1Þ. (16)

In Eq. (16), the initial value of matrix P is specified as P(0) ¼ aI, in which a is a constant and I is an identity
matrix. Starting with an initial estimate, ŷð0Þ, and the corresponding matrix P(0), ŷ can be sequentially
updated as new experimental data are acquired. This parameter estimation algorithm has the advantage that it
computes the parameters step-by-step without repeatedly calculating the matrix solution as in the standard LS
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method. Furthermore, the algorithm allows for the straightforward update of ŷ as the number of
measurements increases, and therefore permits the slowly varying parameters of the system to be tracked.
2.4. Proposed balancing scheme

Fig. 2 presents the overall scheme of the proposed adaptive balancing system comprising the unbalance
calculation module, the unbalance correction module, and the parameter estimation module. Before starting
the balancing procedure, an off-line process using the LS method is performed to determine the unbalance
calculation matrix (yYU) and the initial milling vector calculation matrix (yYX0). Subsequently, when a start
command is received, indicating the need to balance an armature, the unbalance calculation module is
triggered to detect and calculate the initial vibration Yp(k) (including its amplitude and phase) and the initial
unbalance of the armature. The required material removal milling vector, X(k), is then determined by the
unbalance correction module using matrix yYX0, i.e.

X ðkÞ ¼ yYX0Y pðkÞ. (17)

With Eq. (17), the cutting depth and positions required for unbalance correction are presented in X(k). The
armature is then milled in accordance with the information specified in the vector X(k). After milling, the
armature is retested by the unbalance calculation module to determine the residual vibration, Yr(k), and
the residual unbalance, Ur(k). If the residual unbalance amount satisfies the specified ISO grade, the balancing
process is complete. Otherwise, the armature must be milled again, i.e., further slots must be milled in the
armature. When the armature has been successfully balanced, the material removal milling vector X(k), the
Fig. 2. Adaptive balancing system with unbalance calculation module, unbalance correction module, and parameter estimation module.
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previous estimated influence coefficient matrix ŷYX ðk � 1Þ, and the difference between the initial vibration and
the residual vibration (DY(k) ¼ Yp(k)�Yr(k)) are fed to the parameter estimation module to estimate the new
influence coefficient matrix ŷYX ðkÞ in accordance with the error equation as following equation:

eðkÞ ¼ DY ðkÞ � ŷ
�1

YX ðk � 1ÞX ðkÞ (18)

and Eqs. (15) and (16). This calculation is performed after each balancing run and the parameters of the
influence matrix are updated accordingly.

In the balancing process, the value of the residual unbalance, Ur(k), is continuously monitored by the
system. If Ur(k) is found to increase monotonously, indicating that the cutter or some of the mechanical
components of the milling machine are becoming worn, the original influence coefficient matrix, yYX0, is
replaced by the most recent estimated matrix such that the balancing system automatically compensates for
changes in the wear condition of the milling machine.
3. Experiments

3.1. Experimental set-up

As shown in Fig. 3, the hardware components of the unbalance measurement machine include a DC driving
motor, an infrared-ray sensor, two vibration sensors, and a mechanism for supporting the armature. In the
balancing process, the armature is driven by the driving motor at a speed of 1600 rev/min (27Hz) and its speed
is regulated using a three-phase incremental encoder (A, B, Z phase) attached to the driving motor. The rotor
support mechanism is a soft type with a natural frequency of 8Hz. The vibrations of the armature are detected
via two vibration sensors located on either side of the armature support mechanism. The sampling time of the
controlling system is specified as 0.0002 s. Since the oscillatory amplitudes of the rotor are very small and are
contaminated by noise, an analog circuit is constructed to filter and amplify the vibration signals. The phase
angle of the unbalance is measured by using an infrared-ray sensor (CNY70) to detect the appearance of a
mark of reference point placed on the rotor.

The unbalances are corrected by removing an appropriate amount of material from prescribed locations on
the rotor. In this study, the material removal method is implemented using the milling machine shown in
Fig. 3. The milling apparatus includes a pneumatic driven armature fixture, a cutter driven by an AC motor,
Fig. 3. Configuration of hardware components in unbalance measurement and milling machine.
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and a cutting depth control mechanism. The fixture is used to fasten the armature during the milling process.
The infrared-ray sensor and the armature driving motor are used to control the cutting position and to avoid
damaging the armature coil during machining. The cutting depth control mechanism regulates the cutting
depth via a servomechanism. As described in Section 2.4, in the proposed balancing scheme, the unbalance
amount is converted to a milling vector in which the cutting locations and depths are specified. In accordance
with the information contained in this vector, a U-shaped cutter is employed to cut several slots in the center
of the poles on the laminations of the armature.

The real-time control ability of the Matlab XPC system is exploited to construct a system controller
with which to regulate the armature speed, calculate the unbalance amount, perform the parameter
estimation, and control the cutting operation. The XPC system consists of a host PC and a client PC. The host
PC provides the platform for the editing of controlling program written in Simulink while the client PC
executes the controlling program in the DOS environment. The two PCs communicate with one another via
RS232 or TCP/IP.

3.2. Experiments

The armature used in the current balancing experiments is taken from a commercial automobile starting
motor (UNIPOINT) and has a weight of 800 g, a length of 116mm and a diameter of 55mm, as shown in
Fig. 1. For such armatures, ISO 1940 generally specifies a balance grade of G6.3. This particular specification
states that at a balancing speed of 1600 rev/min, the maximum permissible residual unbalance amount is
30 gmm. Since balancing is performed dynamically on two planes of the armature, the maximum permissible
residual unbalance amount on each plane is therefore 15 gmm. Similarly, for the higher grade of G2.5 (taken
in this study as a target when evaluating the performance of the current balancing scheme), the maximum
permissible residual unbalance amount on each plane is 6 gmm.

3.2.1. Evaluating precision of unbalance measurement system

The experiments commenced by evaluating the precision of the unbalance measurement data obtained by
the proposed system. A total of 10 tests were performed in which various masses were added to 10 different
armatures and the corresponding vibratory responses recorded. Applying the LS method to the experimental
data, the following unbalance calculation matrix was obtained:

yYU ¼
6:59ff167� 1:47ff159�

0:62ff � 6� 8:32ff166�

� �
. (19)

Theoretically, two added masses and three vibration measurements on the same armature are sufficient to
determine this matrix. However, because the experimental vibration signals are inevitably contaminated by a
certain level of noise, a larger volume of test data is desirable in order to guarantee a more unbiased and
consistent estimate of the matrix. As described previously, the matrix in Eq. (19) describes the relationship
between the armature unbalance and the corresponding vibratory response. The location and amount of
the armature unbalances corresponding to the vibration measurements YA and YB can therefore be deter-
mined from

UA

UB

" #
¼ y�1YU

Y A

Y B

" #
. (20)

In the proposed balancing system, the matrix yYU is used to evaluate the initial and residual unbalances. To
test the repeatability of the proposed system, the unbalance of an armature with an unknown unbalance was
measured 10 times. Table 1 presents the measurement results obtained for the magnitudes and phase angles of
the left-hand and right-hand side unbalances in each of the ten trials. The means and variations of the
respective quantities are shown at the foot of the table. It is observed that the variances of the measured
unbalance characteristics and the balancing speed, respectively, are very small. Therefore, it can be inferred
that the repeatability of the unbalance calculation and the speed control of the proposed system are
satisfactory.
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Table 1

Repeatability of balancing system in measuring armature unbalance

Test number Rotation speed (Hz) Unbalance on right-hand side Unbalance on right-hand side

Magnitude (gmm) Phase angle (1) Magnitude (gmm) Phase angle (1)

1 27.78 3.86 161 6.55 277

2 27.62 3.97 157 6.45 276

3 27.59 3.98 159 6.6 275

4 27.86 4 155 6.7 277

5 27.78 4 153 7 275

6 27.60 3.8 161 6.7 275

7 27.50 4.1 154 6.47 274

8 27.70 3.8 159 6.5 276

9 27.60 4 161 6.5 274

10 27.70 4 154 6.7 272

Mean value 27.673 3.951 157.4 6.587 275.1

Variance 0.0122 0.0097 10.267 0.031 2.32
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Fig. 4. Relationship between cutting depth (in percentage of the maximum depth) and material removal weight. (Note: ‘‘o’’ indicates
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3.2.2. Unbalance correction using conventional method

Balancing a motor armature using the conventional material removal method involves the following
steps: (1) determine the influence coefficient matrix of the armature, y; (2) calculate the required correction
mass vector, Uc in Eq. (8); and (3) transform the correction mass vector to a material removal milling vector,
X ¼ [XA XB]

T.
As shown in Fig. 4, in the current experimental system, the removal weight (wr) is a nonlinear function of

the cutting depth (x). Applying the curve fitting technique, it is found that the two variables are related by an
expression of the form

wr ¼ �0:0019þ 0:089xþ 0:37x2, (21)

with this function, the milling vector X corresponding to a required correction mass vector Uc can be
determined accordingly.

In most practical cases, the unbalance amount of the armature is quite large. Since the maximum removal
weight of the cutter is limited, this implies that many individual cuts are required for any given milling vector
X (see Fig. 5). Denoting the maximum allowable cutting depth of the cutter as xm, a milling vector, X, with
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Fig. 5. Decomposition of a milling vector.
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a magnitude of x and a phase angle of f can be decomposed as

X ¼ X m þ X 1 þ X 3 ¼ xmfffþ x1ffðf� DfÞ þ x1ffðfþ DfÞ. (22)

Note that Eq. (22) is intended here for illustration purposes only. In real applications, the number of cuts
required for a given milling vector depends on its magnitude.

Using the matrix yYU in conjunction with Eqs. (21) and (22), a series of balancing experiments was
performed using an initial set of 25 armatures. Note that for convenience, these experiments are referred to
collectively as Case I in the following. The corresponding balancing results are presented in Fig. 6, in which the
left panel presents the unbalances (initial and residual) on the left-hand side of the armature, while the right
panel presents those on the right-hand side. The balance tolerance prescribed by the ISO 1940 G6.3
specification is superimposed on both figures for reference purposes. It is observed that the residual
unbalances of the balanced armatures all satisfy the ISO G6.3 grade regardless of the amount of the initial
unbalance. However, the balanced armatures fail to satisfy the more stringent requirements of the ISO G2.5
specification. This may well be a result of too much approximation in the matrix transformations from the
vibration measurements to the amount of unbalance and subsequently to the milling vector.

3.2.3. Unbalance correction using proposed method

In this section, the influence coefficient matrix, yYX, is used to relate the vibration measurement directly to
the milling vector, i.e. X(k) ¼ yYX Y(k). The purpose of this approach is to reduce the errors resulting from the
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various matrix transformations between these two vectors. To obtain the matrix (yYX), 5 cuts of various depth
were made on an armature in different positions on the two balancing planes. For each cut, the difference
between the vibration signal before and after the cut was recorded. Applying the LS method to the
experimental vibration data, the following matrix was obtained:

X ðkÞ ¼ yYX1DY ðkÞ; yYX1 ¼
0:28ff159� 0:1ff138�

0:175ff168� 0:39ff170�

� �
. (23)

Using this matrix, a series of balancing experiments was carried out using a second group of 25 armatures.
The balancing results obtained from these experiments (referred to henceforth as Case II) are presented in
Fig. 7. Comparing Figs. 6 and 7, it is apparent that the variances of the residual unbalances in Case II (i.e. 4.1
and 4.6 for the left- and right-hand side unbalances, respectively) are significantly lower than those of Case I
(5.5 and 15.1 for the left- and right-hand side unbalances, respectively). Although using the influence
coefficient matrix to relate the vibration measurements directly to the milling vector results in an improved
balancing performance, the balancing scheme is still unable to satisfy the ISO G2.5 grade. This may well be
because the influence coefficient matrix used in Case II was obtained using just five sets of vibration data, with
the result that the calculated influence coefficient matrix fails to fully characterize the armature and the
balancing system. Although this problem can be resolved by acquiring a greater volume of vibration data, this
is impractical in the field because the exact number of measurements required is unknown. Moreover, the data
acquisition process is time-consuming.

Accordingly, the experimental investigation next considered the case where the adaptive parameter
estimation technique was employed to specify appropriate values of the influence coefficient matrix
parameters. Matrix yYX1 in Eq. (23) was utilized as an initial estimate, and an off-line process was performed
to determine a new influence coefficient matrix recursively using Eqs. (14)–(16). The balancing data obtained
from Case II, including the initial unbalances, the milling vectors, and the residual unbalances, were used as
the input/output data of the parameter estimation algorithm. In the calculations, at each balancing run, the
new experimental accompanied with the previous data were randomly picked and then supplied to the
parameter estimation algorithm repetitively until the parameters in the influence coefficient matrix converged.
The parameters l and P(0) ( ¼ aI) in Eq. (16) determine the nature of the estimation process. For example, a
larger value of a (and hence a larger P(0)) accelerates the rate of convergence of the estimation process, but
does so at the cost of larger transients. Conversely, a smaller value of l can highlight the importance of new
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Fig. 8. Parametric convergent trajectories of influence coefficient matrix (yYX2) during estimation: (a) magnitudes; and (b) phase angles.
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coming data (allows the more recent data to receive a greater significance in the estimation process), but may
cause the estimated parameters to vary drastically. Fig. 8 shows the parametric convergent trajectories of the
estimated influence coefficient matrix parameters for l ¼ 0.999 and a ¼ 1000. It can be seen that all of the
parameters converge successfully to their final values. Expressing the converged parameter values in matrix
form, the following influence coefficient matrix is obtained:

yYX2 ¼
0:26ff176:4� 0:08ff149�

0:197ff165� 0:364ff169:3�

� �
. (24)

Comparing the parameters in yYX2 with those in yYX1 (see Eq. (23)), it is observed that the magnitudes of the
entries in yYX2 are slightly lower than those in yYX1. Physically, this implies that the amount of material
removed for a given initial unbalance is lower when matrix yYX2 is applied, that is, the chance of over-cutting
can be reduced. Consequently, the residual unbalance will be decreased.

In the third series of experimental trials (designated as Case III), the balancing scheme shown in Fig. 2
was used to balance a third group of 25 field armatures using the influence coefficient matrix y0 ¼ yYX2

(see Eq. (24)). The aim of the balancing operation was to reduce the residual unbalance of the armatures to
such an extent that the armatures satisfied a higher grade of ISO G2.5. Parameter estimation was carried out
for each balancing run and the parameters in the influence coefficient matrix were updated accordingly. The
balancing results are presented in Fig. 9. Note that till Sample 16 balancing run, the newly estimated influence
coefficient matrices were applied to calculate the milling vectors, since the value of the monitored residual
unbalances between Samples 13 and 15 runs showed to increase monotonously beyond the limit of the ISO
G2.5 grade. It was inferred that the cutter and the system components were becoming worn. Furthermore,
during the balancing process, when the residual unbalance of a particular balancing run exceeded the ISO
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Fig. 9. Balancing results of Case III using influence coefficient matrix yYX2: (a) unbalances on left-hand side of armature; and (b)

unbalances on right-hand side. (Note: data lines indicated by ‘‘+’’ indicate initial unbalances, while those marked with ‘‘o’’ indicate

residual unbalances).

Table 2

Comparison of statistical properties of residual unbalances obtained using balancing schemes with different influence coefficient matrices

Cases The influence coefficient matrix

used in the balancing experiment

Mean value (gmm) Variance

Right-hand side Left-hand side Right-hand side Left-hand side

Case I yYU 3.685 5.456 5.5 15.1

Case II yYX1 4.582 3.61 4.1 4.6

Case III yYX2 3.586 2.228 2.23 1.34
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G2.5 grade limit, the corresponding experimental data was discarded and was not used in the parameter
estimation process. The intention here was to prevent the occurrence of sudden changes in the parameter
values caused by factors such as human error and other unavoidable external disturbances.

From the results presented in Table 2, which summarizes the statistical properties of the residual unbalances
obtained using the different influence coefficient matrices, it is clear that both the variance and the absolute
amount of the residual unbalance are considerably lower in Case III than in either Case I or Case II.
Furthermore, other than two armatures (Samples 1 and 15) with high unbalance amounts on the left-hand side
plane, the remaining balanced armatures satisfy the requirements of ISO G2.5 (6 gmm). Overall, the proposed
balancing scheme achieves a 92% success rate in satisfying the ISO G2.5 grade.

In conclusion, the balancing results obtained for Case III reveal that the proposed balancing scheme with
the adaptive parameter estimation algorithm provides a better armature balancing performance than
the conventional method. Since the relationship between the cutting depth of the milling machine and the
removal weight of the armature depends on the degree of wear of the milling cutter and the milling machine
components, the parameters in the influence coefficient matrix should be progressively updated as the number
of milling operations increases. The Case III experimental results show that the proposed method fulfills this
requirement without the need for manual intervention. In other words, the proposed dynamic balancing
system provides the potential to realize a fully automated rotor balancing operation.

4. Conclusions

This study has developed a dynamic balancing system for motor armatures in which the influence coefficient
matrix is calculated using an adaptive parameter estimation method. The results have shown that the
balancing quality is better than that obtained using the conventional influence coefficient method.
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In general, errors in the milling position may potentially result in a significant amount of residual
unbalance. The main sources of the milling position error include round-off and accumulating errors in the
various calculations. Due to constrain of the armature’s structure, the cutting center must coincide with the
center of the poles on the laminations of the armature in order to avoid destroying the armature windings. As
a result, even a small angular calculating or round-off error will at least result in a milling position error of
fe ¼ 3601/29 ¼ 12.411 for the current experimental armature with 29 poles (as illustrated in Fig. 10).
According to our estimation result based on the present experimental data, this milling angular error can cause
a residual unbalance of approximately 8–66% of the initial unbalance. In the most extreme case, when the
milling vector is calculated to be X1 ¼ 2.1+12.51 (as shown in Fig. 10), the question arises as to whether the
cutting center should be placed at Pole 1 or at Pole 2. Since all the vibration measurements used for
the calculations are contaminated by certain levels of noises having its own distribution, it is difficult to
construct reliable guidelines for this decision-making process. Accordingly, a future study will consider the
application of fuzzy-logic theory to resolve this problem. In the anticipated approach, the vibration
measurements will be defined as fuzzy variables and a fuzzy relationship between the vibration measurements
and the milling vector will be established. Finally, the milling vector for a given vibration measurement will be
determined by a process of fuzzy inference.
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